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1 Introduction

Using algebraic insights we are able to answer several geometric questions

that have been asked since the times of the Greeks. The Greeks were very

fascinated by geometry and one area of that is classical straightedge and

compass constructions. A compass is used to measure and translate arbi-

trary distances and is often used for drawing circles of a given radius. A

straightedge is used simply for connecting any two points with a straight

line. All straightedge and compass constructions are composed of the follow-

ing four basic operations:

1. connecting two given points by a line

2. findind a point of intersection of two straight lines

3. drawing a circle with given radius and center

4. finding the points of intersection of a straight line and a circle or the

intersection of two circles
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By using only these operations the Greeks posed the following questions:

1. Is it possible to construct a cube with precisely twice the volume of a

given cube?

2. Is it possible to trisect any given angle?

3. Is it possible to construct a square whose area is precisely the area of

a given circle?

In addition they wanted to know how to construct as many regular polygons

as they could and it wasn’t until much later that Gauss proved that a regular

n-sided polygon can only be constructed with straightedge and compass if

the odd prime factors of n are distinct Fermat primes

2 Constructible Numbers

Definition. Constructible numbers are those whose length can be constructed

from a fixed unit distance using straightedge and compass constructions.

Given two lengths a, b it is clear to see that you can construct lengths

a± b.

a b

a+b

(a) Constructing a+ b

a-b b

a

(b) constructing a− b

Figure 1: Constructing a± b
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By constructing parallel lines and using similar triangles we are able to

also construct lengths ab and a
b

as shown below:

Figure 2: First constructing triangles

Figure 3: Then drawing parallel lines to construct similar triangles with side

lengths ab and a
b

This means that all constructible numbers are closed under field opera-

tions, making the set of constructible numbers a field. Thus by starting with

a unit length, 1, we can construct all of Q. But in addition to these construc-

tions we can also construct square roots. This can be done by constructing a

circle intersecting (−a, 0) and (1, 0) with its center at (1−a
2
, 0) the circle will

then intersect the y-axis at (0,
√
a).
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Figure 4: Constructing
√
a

This is easy to show as the equation of the circle give us:

(x− 1−a
2

)2 + y2 = (a+1
2

)2

a2−2a+1
4

+ y2 = a2+2a+1
4

when x = 0

y2 = a

y =
√
a

This means that the field we can construct is larger that Q. By the above

construction we can obviously construct fields whose extension is of degree 2k

but we have not shown that those are the only constructible field extensions

of Q.

Theorem. If the element α ∈ R is obtained from a field F ⊂ R by a series

of straightedge constructions then [F (α) : F ] = 2k for some integer k ≥ 0.

Proof. By using construction types (1) and (2) we can intersect two lines

with equations y = mx + b and y = m′x + b′ with m,m′, b, b′ ∈ F . Solving

for x gives x = b′−b
m−m′ which still lies in F . By constructions (3) and (4)

we can intersect a circle with a line or another circle. The intersection of

(x−h)2 +(y−k)2 = r2 and y = mx+b is the solution of (x−h)2 +(mx+b−

k)2 = r2 which is still at worst a quadratic extension. For the intersection of

two circles, (x − h)2 + (y − k)2 = r2 and (x − h′)2 + (y − k′)2 = r′2 we can
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show by subtracting the second equation from the first that this is the same

as the intersection of (x− h)2 + (y − k)2 = r2 and 2(h′ − h)x+ 2(k′ − k)y =

r2 − h2 − k2 − r′2 + h′2 + k′2 which has reduced to the previous case of

intersecting a line with a circle. So this means that we can only construct

quadratic extensions with a straightedge and compass.

3 Answers to the Classical Greek Problems

The above proposition is sufficient to prove that none of the constructions

posed by the Greeks are possible to construct.

1. Doubling the volume of a unit cube requires constructing side lengths

of 3
√

2 and since [F ( 3
√

2) : F ] = 3 6= 2k this cannot be constructed.

2. Trisecting a given angle is equivalent to constructing cos(θ/3) and by

the triple angle formula we have that cos θ = 4 cos3(θ/3) − 3 cos(θ/3).

Considering θ = 60 and α = 2 cos 20 we have that α is the real root of

the cubic polynomial α3 − 3α − 1 = 0. This polynomial is irreducible

as it has no rational roots from the rational roots test so it has no real

roots and thus α is not constructible so not all angles are trisectable.

3. Squaring the cirlce is equivalent to trying to construct π. But as π is

transcendental over Q we have that [Q(π) : Q] is not even finite so not

a power of 2. Thus you cannot square the circle with straightedge and

compass.
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4 Constructible Regular N-gons

Definition. A complex number is constructible if its real and imaginary com-

ponents can be constructed.

All of our constructions have been taking place in R2 which is isomorphic

to C so it is very simple to extend our definitions of constructible numbers

to C. If a, b ∈ R and are constructible then we can obviously construct (a, b)

so we can say that a+ bi is constructible.

Thus we can say constructing a regular n-gon is equivalent to constructing

nth roots of unity as the nth roots of unity make up the vertices of a regular n-

gon on the unit circle with a vertex at the point (0,1). Since we’ve established

that the only constructible number are those that are in a field with degree

extension 2k we can construct n-gons where [Q(ζn) : Q] = 2k. Dummit

and Foote shows that [Q(ζn) : Q] = ϕ(n) so the problems reduces to when

ϕ(n) = 2k. Where ϕ(n) is defined to be the number of integers less that n

that are coprime to n

Theorem. ϕ(n) = ϕ(n) = n
∏

p|n(1− 1
p
)

Proof. ϕ(p) = p − 1 as all integers less than a prime are coprime to it.

For n = pk all integers less than or equal to it are coprime besides those

which are a multple of p. There are pk−1 multiples of p less than or equal

to pk so ϕ(pk) = pk − pk−1 = pk−1(p − 1) = pk(1 − 1
p
). By the chinese

remainder theorem we have that if a, b are coprime then gcd(n, ab) = 1 iff

gcd(n, a) = 1 and gcd(n, b) = 1. This implies that if a, b are coprime then

ϕ(ab) = ϕ(a)ϕ(b). Since every number can be decomposed as n = pk11 p
k2
2 . . .
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and all the pkii are coprime to eachother we have that for any n, ϕ(n) =∏
p|n p

k(1− 1
p
) = n

∏
p|n(1− 1

p
)

Considering when n = pk, ϕ(n) = pk−1(p − 1). We can solve for the

values of n of this form that are constructible by setting 2m = pk−1(p − 1).

If k = 1 then p = 2m + 1 and if k > 1 then we have that p = 2. Since we

also have that if two number a, b are relatively prime then ϕ(ab) = ϕ(a)ϕ(b),

ϕ(n) = 2k only for any number n that that is a composite of primes of the

form 2m + 1 and 2l.

This composition fact means that we can compose any two constructible

m and n gons to make an mn-gon. It is very easy to actually compose any

two n-gons that you are able to construct. By angle bisection you can very

easily double an n-gon:

Figure 5: Constructing a regular Decagon from a regular Pentagon

and by overlaying a regular m-gons and a regular n-gon with the same

center and sharing a vertex it is easy to construct a regular mn-gon:
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Figure 6: Constructing a regular 15-gon from a regular Pentagon and Triangle

Definition. A Fermat Prime is a prime number of the form p = 22k + 1

Next we can show that any prime of the form p = 2m+1 is in fact a fermat

prime. This can be shown by the fact that x+1|xa+1 for odd a which follows

from the geometric sum formula: xa+1
x+1

= (−x)a−1
(−x)−a = 1−x+x2−· · ·+(−x)a−1.

This means any p = 2m + 1 = 2a2
k

+ 1 with a odd is divisible by 22k + 1. So

for p to be prime and indivisible a = 0 so p must be of the fowm p = 22k + 1.

Thus we have now proven the Gauss-Wantzel theorem:

Theorem. A regular n-gon is constructible if and only if n is of the form

n = 2kp1p2 . . . pi where k ≥ 0 and p1, p2, . . . , pi are Fermat Primes.

5 Constructing Prime n-gons

As we’ve seen above by composition we can construct any composite regular

m-gon from the regular prime n-gons where n|m, so to actually construct any

constructible n-gons we just need to construct these prime n-gons. Although
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Guass proved the constructibility of many regular n-gons their constructions

were not found for many years to come.

5.1 Carlyle Circles

A useful tool for accomplishing this are Carlyle circles. Carlyle circles are

circles associated to a specific quadratic equation such that the roots of the

quadratic are the horizontal components of the intersection of the circle with

the x-axis. Give a quadratic x2 − sx + p = 0 we can construct its Carlyle

circle by drawing the circle with diameter between the points (0, 1) and (s, p)

Figure 7: Carlyle Circle

This circle has center ( s
2
, p+1

2
) and radius

√
( s
2
)2 + (p−1

2
)2. This gives us

a circle equation:

(x− s
2
)2 + (y − p+1

2
)2 = ( s

2
)2 + (p−1

2
)2

x2 − sx+ s2

4
+ p2+2p+1

4
= s2

4
+ p2−2p+1

4
when y = 0

x2 − sx+ p = 0
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This gives us an easy way to create specific quadratic field extensions.

For any specific quadratic equation we can construct this circle using its

coefficients to find its roots.

While this gives a general method to construct the roots of any quadratic

and thus construct any field we need this does not provide a general method

for constructing very large n-gons. The 65537-gon involves finding the roots

of x2 + x− 214 = 0 which would be very difficult to physically do. [1]

5.2 Constructing the Regular 17-gon

First we will define the following where ζ is the first principal 17th root of

unity:

η1 = ζ + ζ2 + ζ4 + ζ8 + ζ9 + ζ13 + ζ15 + ζ16

η2 = ζ3 + ζ5 + ζ6 + ζ7 + ζ10 + ζ11 + ζ12 + ζ14

η′1 = ζ + ζ4 + ζ13 + ζ16

η′2 = ζ2 + ζ8 + ζ9 + ζ15

η′3 = ζ6 + ζ7 + ζ10 + ζ11

η′4 = ζ3 + ζ5 + ζ12 + ζ14

η′′1 = ζ + ζ16

η′′2 = ζ4 + ζ13

We claim that ηi ∈ R for all i. This can be seen as every η is the sum of

terms of the form ζk+ζ17−k with different k values. ζk and ζ17−k are complex

numbers with the same real component and opposite imaginary components

so their sum is real, specifically: ζk + ζ17−k = 2 cos(2πk
17

). This means that all

of these values correspond to lengths which we will see can be constructed.

We’ve seen that the sum of all nth roots of unity is 0 so the sum of all roots
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minus the root e0 is −1, which means that η1 + η2 = −1. If we rewrite all of

these roots in the form of ζk = e
2iπk
17 then η1 = e

2iπ
17 +e

4iπ
17 +e

8iπ
17 +e

16iπ
17 +e

18iπ
17 +

e
26iπ
17 +e

30iπ
17 +e

32iπ
17 and η2 = e

6iπ
17 +e

10iπ
17 +e

12iπ
17 +e

14iπ
17 +e

20iπ
17 +e

22iπ
17 +e

24iπ
17 +e

28iπ
17 .

Since e
2iπk
17 = e

2iπ(k+17)
17 we have that η1η2 = 4(e

2iπ
17 +e

4iπ
17 +e

8iπ
17 +e

16iπ
17 +e

18iπ
17 +

e
26iπ
17 + e

30iπ
17 + e

32iπ
17 + e

6iπ
17 + e

10iπ
17 + e

12iπ
17 + e

14iπ
17 + e

20iπ
17 + e

22iπ
17 + e

24iπ
17 + e

28iπ
17 ) =

4(−1) = −4 by the same logic as above. This means that η1 and η2 are

the roots of x2 + x − 4 = 0 so they can be constructed by drawing the

corresponding Carlyle circle.

Figure 8: Constructing η1 and η2

By similar computation it is simple to show that η′1 and η′2 are roots of the

equation x2−η1−1 = 0 and η′4 and η′4 are roots of the equation x2−η2−1 = 0
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and thus are constructible. Then we can show that η′′1 and η′′2 are the roots

of x2 − η′1x+ η′4. And thus are also easily constructed using Carlyle circles.

After constructing these lengths through many Carlyle circles it is very

easy to construct the 17-gon. First construct the point (0,
η′′1
2

). This is the real

component of ζ as
η′′1
2

= e
2iπ
17 +e

32iπ
17

2
=

cos 2π
17

+i sin 2π
17

+cos 32π
17

+i sin 32π
17

2
=

2 cos 2π
17

2
=

cos 2π
17

. This means that we just need to construct a circle of radius 1 at the

origin and find its intersection with the vertical line passing through (0,
η′′1
2

)

to find ζ.

Figure 9: Constructing ζ

Once we have found ζ we just need to mark off the length between it and

(0, 1) and then draw each of the other nth roots of unity as they’re evenly

spaced along the circle.
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Figure 10: Constructing all ζs

Then all we need to do is draw the lines between each ζ to construct the

regular 17-gon.

6 Conclusion

This is another example of how it required advances in more theoretical math

was required before a simple question could be answered. Using field theory

we can much better understand the Greek question of what is constructible

and what isn’t. The methods and figures in this paper were taken from

Dummit and Foote in Abstract Algebra [2] and Kuh in Constructible regular

n-gons [3]
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