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1 Introduction

The goal of this project was to compute the constants in Ichino’s pullback formula for Saito-

Kurokawa lifts which correspond to specific values of symmetric square L-functions. The

pullback formula was originally proven for Siegel Eigenstein series by Garrett [Gar84]. To

be precise this pullback formula is a way to write a Siegel Eisenstein series in terms of Siegel

modular forms of lower genus. In this paper we include an exposition on Garrett’s proof in

the case of genus two Siegel Eisenstein series on Sp4 restricted to H × H ⊆ H2 in terms of

classical modular forms on z and w by using a natural embedding of SL2 × SL2 ⊆ Sp4.

Ichino was able to generalize the above result to create a pullback formula for all Saito

Kurokawa lifts, which include the above Siegel Eisenstein series [Ich05]. The pullback for-

mula in this case has that for a genus two Saito-Kurokawa lift of weight k, F, and an

eigenform basis of the space of genus one weight k modular forms {fl} we have

F

z 0

0 w

 =
n∑
l=1

clfl(z)fl(w)

with z, w lying in the complex upper half plane. The purpose of this paper is to find the

above cl values due to the following equality from Ichino’s paper

Λ(2k − 2, Sym2(fl)⊗ f) = 2k
〈f, f〉
〈h, h〉

|〈F |H×H, fl × fl〉|2

〈fl, fl〉2

where f is a given modular form, h is associated to it by the Shimura correspondence and

F is the corresponding Saito-KuroKawa lift of h, having weight k. Each fl is a classical

modular form of weight k, and < ·, · > is the petersson inner product defined on the space

of modular forms. In this formula |〈F |H×H,fl×fl〉|
〈fl,fl〉2 = cl from the previous formula. Thus using

the pullback formula to find these cl values we can then square them and multiply by a

normalizing factor to find specific value of this symmetric square L-Function.

To find these cl values I wrote a script in the programming language sage that was able

to read in files from the modular form database LMFDB.org and output the desired values.

This paper will include background on Modular forms, Hecke Operators, and L-functions,

a write up of specific case Paul Garret’s pullabck formula, Ichino’s generalization, the work

and code that I did to find these values, some of these found values, and future plans.
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2 Background

2.1 Modular Forms

A modular form of weight k is a complex function that is holomorphic on the upper half

plane H and holomorphic as z → i∞, that satisfies the property that

f(
az + b

cz + d
) = (cz + d)kf(z)∀

a b

c d

 ∈ SL2(Z).

It is clear to see that the space of weight k modular forms, Mk, is a vector space but it

is nontrivial that these vector spaces are finite dimensional[SS03]. This is an incredibly

useful property for a variety of reasons but for this project it is primarily necessary for the

computability of the coefficients in the pullback formula.

Siegel modular forms are a generalization of modular forms. The Saito-Kurokawa lifts

we look at in this paper are Siegel Modular forms. We define the Siegel upper half space to

be

Hn = {Z = X + iY ∈Mn(C)|X,Y real, Z = tZ, Y = (im)(Z) > 0}.

Then a function F : Hn → C is a Siegel modular form of weight k and degree or genus n if

F is holomorphic and

F ((AZ +B)(CZ +D)−1) = det(CZ +D)kF (Z)∀

A B

C D

 ∈ Spn(Z).

Where

Spn(Z) = {x ∈M2n(Z)| txJx = J}

for J =

 0 In

−In 0

. Note that Sp1(F) = SL2(F). Also note that we often write µ(g, z) =

det(cz+d)−2 for g ∈ Spn(Z) which is called the factor of automorphy. The third criteria for

being holomorphic at i∞ that classical modular forms comes for free for all Siegel modular

forms of genus two or higher by the Koecher principle [Koh].

For both modular forms and Siegel modular forms it is often important to look at their

Fourier expansion. It is clear that modular forms have a Fourier expansion as g =

1 1

0 1

 ∈
Spn(Z) gives the relation f(z + 1) = f(z). This is the form that these modular forms are

read in from the database and the easiest to work with. These are given by

f(Z) =
∑

T=tT halfintegral
T≥0

a(T )e2πitr(TZ). (2.1)
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Additionally a modular form is called a cusp form if T > 0 in the above summation and

the space of wight k cusp forms is denoted Sk.

It is also easy to show the equality a(tUTU) = det(U)ka(T ) ∀U ∈ GLn(Z). Restricting

U to SLn(Z) gives us a(tUTU) = a(T ). This will be useful later in our computations.

2.2 Hecke Operators

We define a Hecke operator Tn : Mk →Mk as

(Tnf)(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

If we look at the Fourier expansion of a modular form then we can write

(Tnf)(z) =

∞∑
m=0

bn(m)qm

where it is convention to write q = e2πiz and bn(m) =
∑
d|(n,m) d

k−1a(mnd2 ) and a(m) are

the Fourier coefficients of f . [Haz]

We can define an inner product called the Petersson inner product on the vector space

of modular forms: 〈f, g〉 :=
∫
D
f(τ)g(τ)(Im τ)kdν(τ) where D is a fundamental domain and

dν(τ) is the hyperbolic volume form. Under this inner product the Hecke operators are self

adjoint. Because of this and fact that these operators commute we can find a basis that

consists of modular forms that are simultaneous eigenvectors of all Hecke operators. This

is called an eigenform basis. A given eigenform is normalized if a(1) = 1 in its Fourier

expansion.

2.3 Standard L-Functions

For a given modular form, f , with Fourier expansion f(τ) =
∑∞
n=0 a(n)qn we can define its

L-function by writing

L(s, f) =

∞∑
n=0

a(n)n−s

for s ∈ C a complex variable. For f ∈ Sk, L(s, f) converges absolutely for all s with

Re(s) > k/2 + 1. If f is not a cusp form then L(s, f) converges absolutely for all s with

Re(s) > k [DS05].

If f is a Hecke Eigenform with weight k then L(s, f) has an Euler product. Letting

Tpf = λpf , we have

L(s, f) =
∏
p

(1− λpp−s + pk−1−2s)−1
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where the product is taken over all primes. We also know that a(p) = λp. [DS05] Writing

X = p−s we can see

1− λpp−1 + pk−1−2s = 1− λpX + pk−1X2 = (1− αpX)(1− βpX)

for αp + βp = λp and αpβp = pk−1. So

L(s, f) =

∞∑
n=0

a(n)n−s =
∏
p

(1− αpX)−1(1− βpX)−1

2.4 Symmetric Square L-function

We can define the symmetric square L-function for a modular form, f , as

L(f, sym2, s) =
∏
p

(1− α2
pX)−1(1− αpβpX)−1(1− β2

pX)−1.

We want to write the above in terms of the Fourier coefficients of f using what we know

about the standard L-Function. First, for a normalized eigenform, f , it Fourier coefficients

have the relation

a(pr) = a(p)a(pr−1)− pk−1a(pr−2)

so, as we know that a(1) = 1 and a(p) = λp = αp + βp we can use induction to show

a(pr) = αrp + αr−1p βp + · · ·+ αpβ
r−1
p + βrp .

It is easy to see that a(p1) = αp + βp and

a(p2) = (αp + βp)(αp + βp)− αpβp = α2
p + αpβp + β2

p

and then

a(pr) = (αp + βp)(α
r−1
p + αr−2p βp + · · ·+ αpβ

r−2
p + βr−1p )− αpβp(αr−2p + αr−3p βp + · · ·+ αpβ

r−3
p + βr−2p )

= αrp + αr−1p βp + · · ·+ αpβ
r−1
p + βrp
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as desired. And this is equal to
αr+1

p −βr+1
p

αp−βp
So, we can write

∞∑
k=0

a(p2k)X2k =

∞∑
k=0

α2k+1
p − β2k+1

p

αp − βp
X2k

=
1

αp − βp
(αp(

∞∑
k=0

α2k
p X

2k)− βp(
∞∑
k=0

β2k
p X

2k))

=
1

αp − βp
(

αp
1− α2

pX
2
− βp

1− β2
pX

2
)

=
αp − αpβ2

pX
2 − βp + α2

pβpX
2

(αp − βp)(1− α2
pX

2)(1− β2
pX

2)

=
1 + αpβpX

2

(1− α2
pX

2)(1− β2
pX

2)

=
1− α2

pβ
2
pX

4

(1− α2
pX

2)(1− αpβpX2)(1− β2
pX

2)

=
1− p2k−2−4s

(1− α2
pX

2)(1− αpβpX2)(1− β2
pX

2)

We can then take product of the above over all primes p to get

1

ζ(2k − 2− 4s)
L(f, sym2, s) =

∏
p

∞∑
k=0

a(p2k)p−2s =

∞∑
n=0

a(n2)

ns

This alternative definition of the symmetric square L-function give an idea of why it

appear in the pullback formula. In the proof of Garret’s pullback we will see a sum over the

square of all integers in the symmetric square operator defined below.

2.5 Garrett’s Pullback Formula

The following is a rewrite Paul Garrett’s Proof of the pullback of Eisenstein series [Gar84]

in less generality, in the case of level 1, genus 2 Eisenstein series.

We will be computing the pullback of a Siegel’s Eisenstein series via the maps:

H×H 3 (z, w) ↪→

z 0

0 w

 ∈ H2

SL2 × SL2 3

a b

c d

×
a′ b′

c′ d′

 ↪→


a 0 b 0

0 a′ 0 b′

c 0 d 0

0 c′ 0 c′

 ∈ Sp2.

The explicit theorem is as follows:
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Theorem 2.2. Let E
(2)
k be the Siegel’s Eisenstein series of weight k on H2. Then for

2k > 3,

E
(2)
k

z 0

0 w

 = E
(1)
k (z)E

(1)
k (w) + c

(1)−1

k

dim(Sk)∑
j=1

Sjfj(z)f
θ
j (w)

where {fi : i} is an orthonormal basis for cuspforms on H, consisting of eigenvectors

for the symmetric square operator (see §4), with eigenvalues {Si : i}. And the θ-operator

complex conjugates the Fourier coefficients on the f ′is

The only real calculation to worked out is the determination of coset representative for


∗ ∗

0 ∗

 ∈ Sp2(Z) \ Sp2(Z) / SL2(Z)× SL2(Z)


which is worked out in §2 (and related coset computations are in §3).

2.5.1 Additional Background

The Siegel’s Eisenstein series of weight k (of Hn) is

E
(n)
k (z) =

∑
{c,d}

det(cz + d)−2k

where {c, d} indicates that the sum is over (n-by-n) symmetric coprime pairs (c,d) left

modulo GLn(Z). Which is equivalent to summing over pairs (c,d) for which there exist

(a,b) such that

a b

c d

 ∈ Spn(Z). This series is convergent for 2k > n+ 1

Now, define the ”standard” maximal parabolics of Spn for 0 ≤ r ≤ n:

Pn,r = Zn,rGn,r

where Zn,r is the subgroup of Spn with elements of the form
∗ ∗ ∗ ∗

0 1r ∗ 0r

0 0 ∗ 0

0 0 ∗ 1r


and Gn,r consists of elements of Spn of the form

1n−r 0 0 0

0 ∗ 0 ∗

0 0 1n−r 0

0 ∗ 0 ∗


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Note that Gn,r ∼= Spr.

The reproducing kernel K
(n)
k for the space of weight-k cuspforms on Hn is

K
(n)
k (z, w) = c

(n)
k

∑
g∈Spn(Z)

µ(g, z)kdet(g(Z)− w)−2k

with some constant c
(n)
k . For a cuspform f, we have

f(z) =

∫
Spn(Z)\Hn

f(w)K
(n)
k (z, w)(det(Im(w)))kdw

where dw is the Spn(R)-invariant measure on Hn. Equivalently,

K
(n)
k (z, w) =

d(n)∑
j=1

fj(z)fj(w)

where {fj} is an orthonormal basis for the space of cuspforms. [Kli90]

2.5.2 The Double Coset Decomposition

We consider SL2 × SL2 imbedded in Sp2 by

a b

c d

×
a′ b′

c′ d′

 7→

a 0 b 0

0 a′ 0 b′

c 0 d 0

0 c′ 0 c′


and when convenient will identify these groups with their images.

Theorem 2.3. P2,0(Z)\Sp2(Z)/SL2(Z)×SL2(Z) has an irredundant set of coset represen-

tatives

gM =


1 0 0 0

0 1 0 0

0 M 1 0

M 0 0 1


where 0 6= M ∈ Z.

Proof. The proof depends on the fact that Z is a noetherian principal ideal domain. Over

a field the computation is much simpler.

It is well-known that

P2,0(Z)\Sp2(Z)

is in one-to-one correspondence with

GL2(Z)\{symmetric coprime pairs of size 2-by-2}.
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Let SC(n) be the set of n-by-n symmetric coprime pairs, and put

L1 =

g ∈ Sp1(Z)|g =

∗ 0

0 ∗

 =


±1 0

0 ±1

 .

Lemma 2.4. Every coset in GL2(Z)\SC(2)/SL2(Z)× SL2(Z) contains an element of the

form (
c d

)
=

c′11d′11 c′12 d′11 d′12

c′21d
′
11 c′22 0 d′22

 .

Proof. Letting d′11 = gcd(c11, d11, c21, d21), we know by Bezout’s identity and by using a

modified smith normal form algorithm, that we can put it in the correct location by acting

on the left by GL2(Z) and right by SL2(Z). We can then eliminated the entry below it by

an operation of GL2(Z) on the left.

Lemma 2.5. The double coset representation of the previous lemma may be further nor-

malized to the form (
c d

)
=

c′11d′11 c′′12 d′11 d′′12

c′21d
′
11 0 0 d′′22

 .

Proof. Take (
c d

)
=

c′11d′11 c′12 d′11 d′12

c′21d
′
11 c′22 0 d′22


as in the previous lemma. We can find a g ∈ SL2(Z) so that

(c′22 d
′
22)g = (0 d′′22).

Thus,

(
c d

)
g =

c′11d′11 c′′12 d′11 d′′12

c′21d
′
11 0 0 d′′22

 .

Lemma 2.6. In the special coset representative shown as in the previous lemma, d′′22 = 1.

Proof. By the ”coprimeness” of (c d), each row has gcd 1. That is:

c′21d
′
11x+ d′′22y = 1.

But by the symmetry of

(
c d

)
=

c′11d′11 c′′12 d′11 d′′12

c′21d
′
11 0 0 d′′22

 ,
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c′11d′11 c′12

c′21d
′
11 0

td′11 d′′12

0 d′′22

 =

d′11 d′′12

0 d′′22

tc′11d′11 c′′12

c′21d
′
11 0

 ,

c′21d
′2
11 = d′′22c

′′
12, so d22′′ = 1

Lemma 2.7. We can further normalize the representative of the previous lemma to the

form c′′11d′11 d′211c
′
21 d′11 0

c′21d
′
11 0 0 1

 .

Proof. Starting with the form of the previous lemma, left multiply by1 −d′′12
0 1

 ∈ GL2(Z)

to anahilate the (1,4) entry. Then the symmetry gives the (1,2) block.

Lemma 2.8. In the noramlized form of the previous lemma, d′11 = 1.

Proof. By coprimeness the top row has gcd=1 but clearly each element is divisible by d′11,

thus d′11 = 1.

Now we can finish the proof by first multiplying on the right by 1 0

−c′′11 1


to obtain  0 c′21 1 0

c′21 0 0 1

 .

To prove uniqueness, suppose that g ∈ GL2(Z), g′ ∈ SL2(Z), g′′ ∈ SL2(Z), and M and

M ′ are such that

g

 0 M 1 0

M 0 0 1

 g′g′′ =

 0 M ′ 1 0

M ′ 0 0 1

 .

Then we have

g

 0 1

M 0

 g′ =

 0 1

M ′ 0

 ,

g

M 0

0 1

 g′′ =

M ′ 0

0 1

 .

By uniqueness of elementary divisor form, M = M ′.
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So, given such M, clearly

gM =


1 0 0 0

0 1 0 0

0 M 1 0

M 0 0 1


is in Sp2(Z). This proves the theorem.

2.5.3 The Twisted Coset Decomposition

Theorem 2.9. With gM as above, M 6= 0, and P2,0 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

 ,

P2,0\P2,0gMSL2(Z)SL2(Z)

has an irredundant set of coset representatives

gMg
′
0g
′′
1

where

g′0 ∈ SL2(Z)

and

g′′1 ∈ Γ(M)\SL2(Z)

where g′0g
′′
1 ∈ Sp2(Z) as before and Γ(M) is the congruence subgroup of SL2(Z) of elements

g so that  0 M−1

M 0

 g

 0 M−1

M 0

 ∈ SL2(Z).

Proof. It suffices to show that

P2.0(Z)gMg
′g′′ = P2,0(Z)gM

iff

g′, g′′ ∈ SL2(Z)

and

g′′ =

 0 M−1

M 0

 g′

 0 M−1

M 0



11



identifying g′ and g′′ with SL2(Z)SL2(Z) ⊆ Sp2(Z). We look at the condition

gMg
′g′′g−1M ∈ P2,0(Z).

This follows by multiplying-out. Put

g′ =

a′ b′

c′ d′

 , g′′ =

a′′ b′′

c′′ d′′


then

gMg
′g′′g−1M =


a′ −Mb′ b′ 0

−Mb′′ a′′ 0 b′′

c′ −M2b′′ M(a′′ − d′) d′ Mb′′

M(a′ − d′′) c′′ −M2b′ Mb′ d′′


which is in P2,0 when c′ −M2b′′ = M(a′′ − d′) = M(a′ − d′′) = c′′ −M2b′ = 0 which is

ensured by the condition that

g′′ =

 0 M−1

M 0

 g′

 0 M−1

M 0

 .

2.5.4 The Symmetric-Square Operator

For a Siegel modular form f of weight k on H, M ∈ Z>0, define

(TMf)(z) =
∑
g

f(M2g(z))µ(g, z)k,

where g is summed over Γn(M)\SL2(Z), with Γn(M) as in the Theorem of §3 . We define

the symmetric− square operator Sn = S
(k)
n by

Sn =
∑
M

Tm

where M ∈ Z>0 as above.

Proposition 2.10. (Assuming the convergence of the series Snf for a cuspform f) Sn =

S
(k)
n is a hermitian operator on the space of weight-k cuspforms on Hn, with respect to the

Petersson inner product. Further, the eigenspaces of Sn are spanned by cuspforms with

algebraic coefficients.

Proof. First, we can see that

(detM)2kTM = T ′M
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where T ′M is

(T ′Mf)(z) =
∑
g

f(g(z))µ(g, z)k,

where g is summed over

SL2(Z)\SL2(Z)

M 0

0 M−1

SL2(Z).

Then one can check by methods described in chapter 3 of [Shi71] that T ′M is hermitian.

Hence Sn is a sum of hermitian operators, so it is hermitian if the series converges.

For the second assertion recall that the space of cuspforms has a finite basis of cuspforms

with rational Fourier coefficients. The operators TM or T ′M map cuspforms with algebraic

Fourier coefficients to cuspforms with algebraic Fourier coefficients. If we can show all the

T ′M s commute, then the second assertion would follow by linear algebra.

By the criterion of [Shi71], ch. 3 prop 3.8, if we can find an anti-involution * on SL2(Q)

so that (
SL2(Z)

M 0

0 M−1

SL2(Z)

)∗

= SL2(Z)

M 0

0 M−1

SL2(Z),

then we have commutivity. It is easy to check that

g∗ =

0 −1

1 0

 g−1

 0 1

−1 0


works. This proves the proposition

2.5.5 The main Formula

Theorem 2.11. Let E
(2)
k be the Siegel’s Eisenstein series of weight k on H2. Then for

2k > 3,

E
(2)
k

z 0

0 w

 = E
(1)
k (z)E

(1)
k (w) + c

(1)−1

k

dim(Sk)∑
j=1

Sjfj(z)f
θ
j (w)

where {fi : i} is an orthonormal basis for cuspforms on H, consisting of eigenvectors for

the symmetric square operator (see §4), with eigenvalues {Si : i}. Finally, the θ-operator

complex conjugates the Fourier coefficients on the f ′is

Proof. This amounts to putting together our previous material, especially the coset decom-

position of §2, §3, and the ”cocylce formula” for µ that µ(g1g2, z) = µ(g1, g2(z))µ(g2, z).
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First, for M0 = 1,

µ(gM0
,

z 0

0 w

) = det(

1 w

z 1

)−2 = (1− zw)−2.

Then

∑
g∈SL2(Z)

µ(gM0
g,

z 0

0 w

)k

=
∑

g∈SL2(Z)

µ(g, z)k(1− g(zw))−2k

=
∑

g∈SL2(Z)

µ(g, z)k(gz − gw)−2k,

since 0 −1

1 0

 : ξ 7→ −ξ−1

is in SL2(Z). But this expression is just

c
(1)−1

k K
(1)
k (z,−w)

where K
(r)
k is the kernel function of §1, and c

(1)
k is the constant there. This is, then,

c
(1)−1

k

dim(Sk)∑
j=1

fj(z)fj(−w))

c
(1)−1

k

dim(Sk)∑
j=1

fj(z)f
θ
j (w))

where θ is as in the statement of the Theorem, and {fj : j} is any orthonormal basis for

cuspforms on H.

For fixed M one similarly computes that

∑
g′0,g

′′
1

µ(gmg
′
0g
′′
1 ,

z 0

0 w

)k

=
∑
g′′

µ(g′′, w)c
(1)−1

k K
(1)
k (z,−M2g′′w)

where g′0, g
′′
1 are summed as in §3, and g′′ ∈ Γ(M)\SL2(Z). Then by the previousm this is

c
(1)−1

k

dim(Sk)∑
j=1

fj(z)(TMfj)
θ(w).

Now by the Proposition of §4, we make take {fj} to be eigenvectors for S1, as S1 is hermitian.

Then the above becomes, when summed over all M ,

c
(r)−1

k

∑
j

Sjfj(z)f
θ
j (w).
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This gives the last term asserted formula. For the first term we will omit how the identity

coset (M = 0 in theorem 2.3) gives rise to the Eisenstein Series. This can be found in

the full proof by Garret. With regards to convergence, we see that all series mentioned

are subseries of E
(2)
k

z 0

0 w

, so are absolutely convergent uniformly for (z, w) in compact

subsets of H2. Thus the theorem is proven.

3 Generalizations beyond Eisenstein Series

3.1 Saito-Kurokawa lifts

Let f ∈ S2k−2(Γ1) be a cusp form of genus one and weight 2k − 2, with k even. Kohnen

[Koh80] gave a one to one correspondence between the space S2k−2(Γ1) and the space

S+
k−1/2(Γ0(4)). The latter space is the space of cusp forms of weight k − 1/2 with respect

to Γ0(4) =


a b

c d

 ∈ SL2(Z) : 4|c

, whose nth Fourier coefficient vanishes whenever

(−1)k−1n ≡ 2, 3 (mod 4). Let g ∈ S+
k−1/2(Γ0(4)) correspond to f, and let g have Fourier

coefficients {b(n)}. For a posisitve symmetric, and half integral 2× 2 matrix T , define

a(T ) =
∑

d|gcd(T )

b(
det (2T )

d2
)dk−1.

Then we can define F : H2 → C by the Fourier expansion F (Z) =
∑
T a(T )e2πitr(TZ). Then

F ∈ Sk(Γ2) and F 6= 0 if f 6= 0 [Pit19].

3.2 Ichino’s Paper

In his paper on Saito-Kurokawa lifts, Ichino primarily proved the algebraicity of these values

of L-functions. Specifically, let κ be an odd positive integer, f ∈ S2k(SL2(Z)) be a normal-

ized hecke eigenform, and h ∈ S+
κ+1/2(Γ0(4)) be a Hecke eigenform associated to f by the

Shimura correspondence. Let F ∈ Sk+1(Sp2(Z) be the Saito-Kurokawa lift of h. For each

normalized Hecke eigenform g ∈ Sκ+1(SL2(Z) we consider the period integral 〈F |H×H, g×g〉.

Let Λ(s, Sym2(g)⊗ f) be the completed L-function given by

Λ(s, Sym2(g)⊗ f) = ΓC(s)ΓC(s− κ)ΓC(s− 2κ+ 1)L(s, Sym2(g)⊗ f) (3.1)

where ΓC(s) = 2(2π)−sΓ(s). It satisfies the functional equation:

Λ(4κ− s, Sym2(g)⊗ f) = Λ(s, Sym2(g)⊗ f). (3.2)
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The main result of this paper is that

Λ(2κ, Sym2(g)⊗ f) = 2κ+1 〈f, f〉
〈h, h〉

|〈F |H×H, g × g〉|2

〈g, g〉2
. (3.3)

The term |〈F |H×H,g×g〉|
〈g,g〉2 is the coefficient in the pullback formula cl which we are trying to

find. This can be seen because taking the inner product of our saito-kurokawa lift restricted

to H × H with a eigenform basis vector makes all other basis vectors drop out and leaves

our cl coefficient. This means that finding these cl values gives us a way to compute these

specific values of this normalized symmetric square L function.

4 Pull-Back Formula

While we proved Garrett’s pullback formula above, we will use the generalized pullback

formula that states for a Saito-Kurokawa, F , can be restricted to H × H and written in

terms of an eigenform basis of genus one cusp forms {fl}nl=1

F

z 0

0 w

 =

n∑
l=1

clfl(z)fl(w) (4.1)

Where the cls are the values we are trying to which are equal to the last term in (3.3)

Letting aF (T ) be the Fourier coefficient of F corresponding to half integral matrix positive

matrix T and al(n) be the nth Fourier coeffienct of the lth basis vector of the eigenform

basis of cusp forms. Then the above formula gives us the relation

∑
T=

n ∗

∗ m


aF (T ) =

n∑
l=1

clal(n)al(m). (4.2)

5 The Code for this Computation

To find the cl values mentioned above I wrote a program in the sage programming language.

This code takes in given modular forms and outputs all cl values for the given weight

pullback.

The first step in doing this computation was downloading the Fourier expansions of the

Saito-Kurokawa lifts and eigenform basis of modular forms from LMFDB.org. The Saito-

Kurokawa lifts were saved in json files and easily readable, while the genus one modular

forms were downloaded in a short program to generate the expansion. Both were given in

the form of an indeterminate of a field extension which was specified. It is conjectured by
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Maeda and believed to be true that all of the eigenform basis vectors lie in the same Galois

orbit.

This meant it was necessary to find a common field to work in. We defined K to be

a field in ′a′ to be the field containing the coefficients of the Saito-Kurokawa lifts and L

to be a field in ′b′ that contains the coefficients of the eigenform basis of modular forms.

Because all of the basis modular forms are in the same Galois orbit and because we need to

differentiate them to form a linear system of equations we define O to be the Galois closure

of L so we can compute the Galois conjugates of the given basis vector in O. Lastly, the

field we work in is F , the composite field of K and O.

Because we are going to be solving a linear system of equations we next define a 1 × n

matrix where n is the dimension of L and a vector. Next we have outer loops over the

diagonal entries of a 2 × 2 matrix. Within this loop we compute the left and right hand

sides of equation 3.2 for the given diagonal entries.

The right hand side is simple to compute. If i and j are the diagonal entries from the

outer loop then we multiply the ith and jth Fourier coefficients of the provided eigenform

basis. We then find the galois conjugates of this value in F and append a row vector with

these values to the above matrix.

Looking at the left hand side, there are finite T that are half integral and positive definite

with a given diagonal. We iterate over each of them and look up the corresponding Fourier

coefficient. Because matrices in the same GL2(Z) orbit under the action of tgTg with

g ∈ GL2(Z) have the same Fourier coefficient, the data file only contains a representative of

each orbit. So we use the built in command to test equivalence of binary quadratic forms

to compare a given T to each representative in the datafile with the same determinant until

the representative corresponding to T is found and the correct coefficient is found. The

coefficients are summed across all T with the same diagonal and then put into the field F

and appended to our vector we created earlier.

At the end of this iteration of the outer loops we compute the rank of the generated

matrix. If it is not rank n then we continue onto a new set of diagonal entries to the matrix.

If it is rank n then we break out of the loop and solve the system of equations corresponding

to the matrix with solution of the given vector. By solving this we obtain the cl’s as desired.

They are given as algebraic numbers in the field F .

6 Findings

Below is a table of the found cl values for given small weights.
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Weight Field Polynomial Computed values with field indeterminate ’a’

16 x2 − x− 12837 24a+ 1524

18 x2 − x− 589050 12a - 6900

20 x2 − x− 15934380 -84a - 258720

22 x3 − x2 − 25398986824x− 1557240438880016 −437760
91 a2 + 39329852400

91 a+ 7492620289861440
91

7 Conclusion and Future Plans

We have successfully found many of these cl values but due to computational limitations

it still takes significant amounts of time to find these values in modular forms of large

weight. The dimension of these spaces of modular forms increases very quickly as the

weight increases which corresponds to a larger field polynomial and a much longer time

doing any computation. More time could be spent on simply optimizing the code as well

as looking into running it on larger computing clusters. But we have successfully created

a tractable program to compute these values which can easily be turned into values of the

related symmetric square L functions.
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